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The non-linear stability of hydromagnetic flows is investigated by applying 
energy methods. A universal stability estimate, namely a stability limit for 
motions subject to arbitrary non-linear disturbances, is obtained for bounded or 
periodic domains. Our analysis is restricted to fluids possessing constant density 
and electrical conductivity and we do not take into account temperature or Hall 
effects. This result establishes the existence of an open region of certain stability 
near the origin of the (Be, am) Cartesian plane for every fixed P, (where Re, 2, 
and P, are the Reynolds number, magnetic Reynolds number and magnetic 
Prandtl number, respectively). The universal stability limit can then be improved 
by suitably defining a maximum problem using variational techniques, and 
obtaining the relevant Euler-Lagrange equations. The tentative solution to this 
problem gives a stability limit which enlarges the universal stability region. Our 
results are then compared with linear and experimental ones, with special 
emphasis given to the role played by the magnetic field. 

1. Introduction 
The linear stability of hydromagnetic flows has been investigated by many 

authors.? In  the linear theory, disturbances are assumed inflnitesimal and in 
many cases a,, the magnetic Reynolds number, is assumed small while a,, the 
Reynolds number, is varied. The neutral curves obtained in this manner indicate 
an increase in stability due to the presence of the magnetic field (namely, an 
increase in the critical Be when a,, or the Alfvbn number A ,  is increased). As in 
the case of non-magnetic flows, the linear stability limits which delineate criteria 
for instability are well above the critical parameters obtained by experiments. 

t The linear stability of channel flows with aligned and crossed magnetic fields was 
investigated by Stuart (1954) and Luck (1955), respectively. More recently these problems 
were investigated by Tarasov (1960), Hains (1965) and KO (1968). Hydromagnetic stability 
of boundary layers was analysed by Rossow (1958) and Abas (1968) while rotational 
Couette flow was treated by Chang & Sartory (1967). Experimental investigations were 
carried out by Murgatroyd (1953) and Donaldson (1962), for example. Despite thedifficulties 
in conducting experiments with liquid metals, there is a renewed interest in experiments 
with liquid metal MHD generators (see Cerini & Elliot 1968). Such experiments can 
potentially provide pertinent stability information. 

Other very important kinds of MHD instabilities due to Hall effects, which are not in- 
cluded in the present work, have been investigated theoretically and experimentally by 
Kerrebrock & Dethlefsen (1968) (electrothermal instability in non-equilibrium ionization 
where cr is a function of T andp), Velikhov (1962), McCune (1964) (magneto-acoustic waves 
interacting with Hall currents) and others. 
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Another factor emphasized lately by Hunt (1966) is the important role played 
by three-dimensional disturbances, as opposed to the two-dimensional ones 
normally considered by the linear theory (Squires' (1933)) theorem), in the 
explanation of transition phenomena. 

Recent non-linear stability investigations of non-magnetic flows (see Joseph & 
Carmi 1969) were successful in predicting the correct experimental instability 
mode for three-dimensional finite-amplitude disturbances. The disturbance pro- 
pagating in a direction transverse to the main flow direction was found to be the 
most destabilizing, in agreement with the experimental results (e.g. Fox, Lessen & 
Bhat (1968) who investigated the stability of Hagen-Poiseuille flow). 

As the linear theory can only predict instability and is unable to provide a 
stability criteria which can be tested experimentally, it is of great interest to 
apply the non-linear stability theory to the present problem. In this paper we 
will establish a universal stability estimate for arbitrary non-linear disturbances, 
in bounded or periodic domains, for hydromagnetic flows with constant density 
p and electrical conductivity c, neglecting temperature and Hall effects. The 
result will then be improved using variational techniques. The energy method to 
be employed was described by Serriii (1959) and Joseph (1966) for viscous incom- 
pressible and thermoconvective flows. The estimates obtained will provide 
sufficient conditions for asymptotic stability and will establish regions of certain 
stability near the origin of the (Ae7 2,) Cartesian plane. It should be noted that 
although our treatment considers the stability of a fluid with constant p and u 
the analysis can be expanded to include slight compressibility effects. Tempera- 
ture effects were recently included by Lalas & Carmi ( 1 9 7 0 ~ )  in the energy 
stability investigation of a conducting Boussinesq fluid (where we assume 
density variations only appear in the buoyancy term and where the electrical and 
thermal conductivities were taken as constants). A similar analysis was also 
carried out for the thermoconvection of ferrofluids (see Lalas & Carmi 1970b). 

2. Difference motion equations and energy identities 
The governing equations of motion for a viscous fluid with constant density 

and finite conductivity flowing in a magnetic field are (see Chandrasekhar 1961) 

dV 1 

at PPO P 

_ -  - B.VV+-V'B, dB 
at GPO 

1 

V.V = 0, V.B = 0, 

where V = velocity vector, B = magnetic flux density vector, p = density o 
fluid, p = pressure, ,uo = magnetic permeability, v = kinematic viscosity and 
u = electrical conductivity. 

We will consider bounded domains V with pre-assigned boundary conditions 
V and B on the rigid surface aV of V .  

To analyse the stability of the basic motion (V, B7p) we consider an altered 
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motion (V*, B*,p*) satisfying the same equations (1) and the same boundary 
conditions, but differing from this state initially. By subtracting the relevant 
governing equations we obtain the difference motion equations (see Joseph 1966) 

1 5 +u. VB + u .Vb = B . V u +  b .Vu + b .VV+ __ V2b, 
dt PPO 

du 1 
- + u . V V + U . V U  = - (b.VB+b.Vb+B.Vb) 
dt PPO 1 

with homogeneous boundary conditions 

u = b = O  on aY, (3) 

and where we defined the difference variables u, b as 

u = V*-V and b = B*-B. 

We have to  determine now the conditions under which the altered flow will 

To do that we define&, and x2, the kinetic and magnetic energies, respectively, 

tend asymptotically to the basic flow as t -+ CQ. " 

V 

We say that the basic motion is asymptotically stable in the mean if xl -+ 0 
V " 

and k, -+ 0 as t -+ 00. The rates of change of xl and x2 are governed by 

~ = - / v ( ~ . D . ~ + v V ~ :  Vu)+- (B.Vb.u+b.Vb.u+b.VB.u),  (5a) ' S  dl 
at PPO y 

( 5 b )  
1 Sv 

1 
-b.D.b+-Vb:Vb + (B.Vu.b+b.Vu.b-u.VB.b),  a& -=-sy( at 0 ; U O  

which in turn are obtained by integrating the following equations 

d'U2 1 
2 = -u.D.u-vVu: Vu+- (B.Vb.u+b.Vb.u+b.VB.u)+V.A,, ( 6 a )  

dt PPO 
dib2 1 
-- - + b .  D .  b -- Vb: Vb + (B.  VU. b + b.  VU. b -u. VB. b) + V .  A,, (6b)  
at VPO 

and using the divergence constraints ( 2 ~ )  and the boundary conditions (3).  Here 
D is the strain rate tensor of the basic motion and 

Equations (6a ,b)  are obtained by dotting u, b into ( 2 a ) ,  (2b) ,  respectively. 
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The energy functionals (5 a)  and (5  b )  also hold for unbounded domains V when 
the flow geometry is such that the disturbances can be assumed spatially periodic 
at each instant. 

The dimensionless form of (5) is 

= -1 (R,v.E.v+Vv: Vv-R,h.VH.v)+C, 
d7 v 

pm-2 dK = - Iv ( -P,R,h. E .  h+Vh: V h +  R,v. VH. h) - C, ( 8 b )  d r  

where x = z / d ,  d = characteristic length, r = (v/d2)t, v = u/U,, U, = reference 
velocity (typically the maximum velocity in V), E = D/m, - m  = least charac- 
teristic value of D, P, = pocv = magnetic Prandtl number, h = bA/B,Pi ,  
B, = maximum magnetic field in V,  A = B,/U,(pp,)* = Alfven number, 
H = B A / B , P i ,  Re = md2/v = Reynolds number and R, = a,u,dU, = magnetic 
Reynolds number. The magnetic Reynolds number R, is the ratio of the con- 
vection rate to the diffusion rate of the magnetic field, while the Reynolds number 
Re is a similar ratio for the vorticity field. Large R, implies a thin boundary layer 
in which dissipation occurs. Outside this region the magnetic field and the flow 
are ‘frozen’ together. Small R, on the other hand, implies that the total magnetic 
field in the flow is essentially equal to the imposed one, so that the induced field is 
small. The magnetic Prandtl number P, gives an indication of the relative 
diffusion of vorticity to the diffusion of the magnetic field. 

Intheabove r P 

K ,  = Jv+v2, K 2  = J Y + b 2  

C = R, (H.Vh.v+h.Vh.v) L and 

= - R, IY (H . Vv . h + h . Vv. h). 

The last relation follows after integration by parts and using the boundary 
conditions and divergence constraints. Note that the above definitions of h and 
H suppress the dimensionless parameter A .  In  the following analysis only the 
energy identities and kinematic constraints will be utilized, with no further use 
of the local non-linear conservation equations. 

Adding (8a) and ( 8 b )  gives the rate of change of the total energy E 

dE d 
dr  d7 - - [K,+P,K,] = - [VV: Vv+Vh: Vh L _ -  

+ Rev . E . v - Re P, h . E . h + 2R, v . G . h], (9) 

where G = antisymmetric part of VH. 

3. Universal stability estimate 
In this section we generalize the stability criteria developed by Serrin (1959) 

and Joseph (1966) to hydromagnetic flows. According to these criteria, if the 
right-hand side of (9) is negative, for an arbitrary class of functions v, h satisfying 
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V . v = V . h = 0 and homogeneous boundary conditions, we have asymptotic 
stability in the mean. The term 

-Iv (Vv: V v  + Vh: Vh) 

is always negative; hence viscous and magnetic dissipation always stabilize the 
flow. The remaining three integrals in the right-hand side of (9) do not have 
definite signs and therefore can potentially destabilize the flow for critical values 
of the parameters Re, R, (P, will be kept fixed in the following). We will first 
prove the existence of a neighbourhood near the origin of the (Re, R,) plane in 
which the motion is certainly stable. 

THEOREM. Let V = V ( t )  be a bounded or periodic region of space and V, B the 
velocity and the magnetic flux density vectors, respectively, satisfying prescribed 
conditions on aV. Then E = (K,  + PmK2) satisj2es 

E < 8, exp ( - 2MNr), (10) 

where M = S-(8,+8,), N = min(1, l/Pm), a, = max(Re,RePm), 8, = nRnl und 
n = max /GI. 

Here E, = K,, + P, K,, is  the initial disturbance energy and S is defined in ( 1  2) 
below. If M > 0 for all r ,  then E 3 0 as t -+ 00 and the flow is  asymptotically stable 
in the mean. 

We consider flows for which n exists in the closure of 9'". 

Proof. By the Schwarz inequality 

For v = h = 0 on i?V and divv = div h = 0 in V we have 

Jv Vv:  V v  > 2SK,, 

Jv Vh:  V h  > 2SK,, 

where S varies for various flow geometries as described in Shir & Joseph (1968). 
For spherical regions S 80 is the least positive root of tan (@)* = (is)& (see 
Payne & Weinberger 1961) and for other geometries the exact bounds were given 
by Velte (1962) and Sorger (1966) (e.g. for channel flow 6 = 3.7477,). 

Using ( l l ) ,  (12) in (9) gives 

dE1d.r < - 2N[S- (8, + R,)] E,  

from which (10) follows upon integration, proving the theorem. 
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For stability we must have the condition 

R e f a m  6 6. (14) 

This relation is plotted in figure 1 and bounds region A of universal stability. It 
should be noted that the magnetic field appears implicitly through m in Re, while 
the magnetic field gradient appears explicitly through fl,. 

FIGURE 1. Universal and improved stability regions. A ,  universal stability region bounded 
by &+8, < S; 3, improved stability region bounded by @pU) where p = RJR,. 

When the conductivity is zero, 2, = 0 and we recover Serrin’s (1959) stability 
result Re < 6, for non-conducting flows. For stationary fluids, one has to further 
specify U,. Since the dominant mechanism of propagation of a disturbance in a 
constant density fluid at rest with a magnetic field is the Alfvbn speed, we take 
U, = B m a x / ( p o f ) i  giving R, = dBm,x(pu , /p ) J .  In  this case the magnetic field 
appears explicitly in the stability criteria fl, < 6. 

Using (14) we can also prove the uniqueness of steady flows in bounded regions. 

COROLLARY. Let V*, B*, p* and V, B, p be the velocity, magneticJlux density and 
pressure, respectively, of two steady flows in Y,  subject to the same boundary condi- 
tions on a r .  Then the two$ows are identical, provided (14) holds. 

Proof. Since the flow is steady, K,  and K ,  must be constant. On the other hand 
they must satisfy (13). As (14) is also satisfied, we must have 

K,  = Kl0 = K ,  = KZo = 0, 

implying V* = V, H* = H, p* = p (almost everywhere), proving the corollary. 



Universal stability of hydromagnetic flows 717 

4. Improved stability region 
The result obtained in the previous section is rigorous but conservative because 

of the rather crude estimates of the right-hand side of (9). An improved stability 
region is obtained by applying calculus of variation techniques to the above 
problem. For this purpose, we rewrite (9) as follows 

with 

and where 

" . - 9 [ - 1 + R m ( g ) ]  dT < 9 3 ( - 1 + % ) ,  

9 = Iv (Vv: Vv+ Vh: Vh), 

I = J y  (pv. E. v-,uP,h. E .  h + 2v. G . h), 

P = ReIRm, 
1 = max (gj. 

v, h 

Solving the maximum problem (16) for all admissible functions v, h which satisfy 
the divergence constraint and homogeneous boundary conditions will render an 
improved stability criteria. We will have certain stability if 

.f?, < fib), where f i (p) = nR(p). 

The extremum problem max ( - I )  subject to the additional normalizing con- 
straint 9 = 1 , leads to the following Euler-Lagrange equations, 

(17a,b)  I pRv.E+Rh.G = -Vp+V2v, 
-pP,Rh.E+RV.G = -Vp1+V2h, 

where 2plR, 2pJR were introduced as Lagrange multipliers of the divergence 
constraints. The least positive eigenvalue of (17) for each p (with P, fixed) will 
give a limit stability point in the (Re, fi,) plane. Solving for the various ,u will give 
us a curve in the parameter plane (Re,Rrn) delineating an improved stability 
region. This curve is tentatively shown in figure 1 bounding region B. The above 
eigenvalue problem can be solved for various geometries and physical situations 
and the stability limit obtained can be compared with experimental and linear 
theory results. It can also provide a valuable guide in the design of future 
stability experiments especially in the prediction of critical modes (as shown for 
other problems by Joseph & Carmi 1969). 

5. Discussion 
The value of the linear theory lies in its ability to predict instability. On the 

other hand, by the energy theory, we can obtain a criterion for certain stability. 
In  this sense the two theories are complementary. In  this paper we discussed the 
energy criteria of stability of hydromagnetic flows and first proved rigorously the 
existence of a stable region near the origin of the (Re. 8,) plane (P, = constant). 
The functions admitted in the search of our estimates do not necessarily satisfy 
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the conservation of momentum and energy equations. They are kinematically 
admissible functions (i.e. satisfy continuity and the boundary conditions), but 
may be dynamically inadmissible. 

The estimate obtained is very conservative as it ensures stability of the flow 
subject to all disturbances, even to those that violate conservation requirements. 
Note that the stability limit is reduced by increasing either one of the parameters, 
as opposed to linear theory results where the introduction of a magnetic field 
inhibited instability. 

Next we applied variational techniques to improve our estimates and tenta- 
tively obtain an optimum stability limit. The actual solution of the derived 
Euler-Lagrange equations for various physical situations should now follow. 
Results obtained for non-magnetic flows are able to predict the correct critical 
disturbance mode for non-linear disturbances of finite amplitude. As mentioned 
in the introduction, for Hagen-Poiseuille flows, the energy results (Joseph & 
Carmi 1969) predicted that the azimuthal wave disturbance plays a dominant 
part in transferring energy from the basic to the difference motion as was also 
demonstrated by experiments (Fox et al. 1968). In  this respect the energy theory 
gives a result which is more useful than the one obtained by the linear theory. 
We believe that similar results will hold for hydromagnetic flows but further 
experimental verification will be necessary. 

There also exist flows (see Joseph 1966) where no subcritical instabilities are 
possible. By subcritical instabilities we mean those instabilities which occur at 
parameter values lower than the one given as critical by the linear theory. For 
such cases the experimental results coincide with the necessary and sufficient 
conditions for stability provided by the linear and energy theories, respectively. 
Subsequent investigations should fully analyse the role played by the magnetic 
field on the stability of hydromagnetic flows and in changing the range where 
subcritical instabilities are possible. Finally, we would like to point out the 
possible application of the energy theory techniques to  two- and three-fluid 
models, which are of great practical importance in MHD generator design. 
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